
Report for Distributed Systems Seminar on storing parts of Dublin Bus
GPS sample data in a Blockchain Data Structure*

Anders Martoja1

Abstract— Blockchain is new disruptive technology that al-
lows to store data in a decentralized manner without the
need of a central authority figure. The data, that is stored
in a blockchain, is hashed to provide security and is publicly
accessible. Hashing data into a secure format is crucial for
blockchain. A widely used hashing function in blockchain
technologies is SHA-256.

The author of this report provides an overview of SHA-256
hashing function and an introduction into the inner workings
of the blockchain technology. Additionally, the author of this
report has implemented the most basic version of a blockchain,
simply hashing GPS related data into blocks and then append-
ing them to the chain. The results from the implementation
show that creating a blocks that contains GPS related data
and then appending them to the chain consumes very little
time.

I. INTRODUCTION

Blockchain is a buzzword in academia and industry.
Kodak[1], which is a imaging company that is invested in
several fields, e.g. Print Systems, Enterprise Inkjet Systems,
Consumer and Film, Advanced Materials and 3D Printing
Technology etc., has released a KODAKOne platform and
KODAKCoin cryptocurrency[2]. Which caused their stock
prices to rise[3]. While profits are a strong driving factor
for blockchains, the technology allows for distribution of
databases, so that what ever is stored in the blockchain can
be taken as truth. Blockchains enable data sharing between
hosts so that the hosts do not need to necessarily trust each
other - without a central authority figure[5].

Author’s main goal for this report was to implement a ba-
sic version of a blockchain, so that GPS related data, could be
stored in an immutable data structure. No verifiers, miners,
distribution of the blockchains or adequate solutions for the
Byzantine fault tolerance[4] are taken into consideration in
the work at hand.

This report is organized as follows. Section 2 covers the
necessary background for this report, SHA-256 hash function

*This work was not supported by any organization
1Anders Martoja is a 1st year Master’s student at the Institute of

Computer Science, University of Tartu, Juhan Liivi 2, Tartu, Estonia
anders.martoja at ut.ee

and overview of blockchain technology. Section 3 describes
the implementation of the solution. Section 4 shows the
results with respect to time. Section 5 then draws conclusions
from Section 3 and 4 to highlight the current challenges and
future work. Finally, Section 6 presents the conclusion for
the report.

II. BACKGROUND

This section gives an overview of technologies that are
necessary to accomplish the main goal of this report. In the
beginning of subsection A, the author gives briefly describes
hashing in general and its’ properties. The second half of
subsection A is dedicated to SHA-256 hash function, which
ties into subsection B, that focuses on blockchain, the latter
uses SHA-256.

A. SHA-256

Hash function can be any function that takes data of erratic
size and maps it to data that is of fixed size. Hash function
outputs are called hash values, hash codes, digests or hashes.
[6]

In cryptography a hash function allows for easy verifica-
tion of the digest, when the input data is known. When the
input for the hash function is unknown, the hash function is
purposefully built to hinder the reconstruction of the input,
simply from the hash value. [6]

A n-bit cryptographic hash function takes an input of ar-
bitrary length and produces n-bit digests, with two important
properties:

• one-way - when one is in possession of a hash, it
should require roughly 2n computations to reproduce
the message that hashes to the given hash value.

• collision-resistant - finging any two messages, that pro-
duce exactly the same hash values after going through a
hash function, should roughly require 2

n
2 computations.

Before hashing the data the data undergoes a 2-step
preprocessing. Firstly, the data is converted into binary and
afterwards gets padded, this results in a 512-bit padded
message. [7] The pad consists of l, which is the length of a



message in bits, followed by a ”1”, which represents the end
of the message. Then k-zero bits are added. k is the solution
to the following equation:

l + 1 + k ≡ 448 mod 512

k has to be non-negative and to satisfy the requirement of
being the smallest solution. The pad is completed by a 64-
bit block which is the binary representation of the decimal
number l.

After completing the pad for the message, it is parsed
into N 512-bit blocks, in the form of M (1),M (2), ...,M (N).
Each of these blocks are then divided into 32-bit words
M

(i)
0 ,M

(i)
1 , ...,M

(i)
15 . [7]

The main SHA-256 compression cycle has two main
components:

• SHA-256 compression function, Fig. 1.
• SHA-256 message schedule, Fig. 2.

The compression function utilizes four logic functions and
the message schedule uses two. In the following list, the first
four functions are from the compression function and the last
ones are from scheduling function. Each of these function
take a 32-bit words as input and also output 32-bit words.
[7]

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ0(x) = S2(x)⊕ S13(x)⊕ S22(x)

Σ1(x) = S6(x)⊕ S11(x)⊕ S25(x)

σ0(x) = S7(x)⊕ S18(x)⊕R3(x)

σ1(x) = S17(x)⊕ S19(x)⊕R10(x)

Sn stands for right rotation by n bits and Rn stands for
right shift by n bits.

Before compression ensues the SHA-256 algorithm
initializes registers a, b, ..., h with 32-bit word hash values.
[7]

The small squares with crosses in the center denote
mod 232 addition. The main loop Fig. 1 starts off by
performing all of the above mentioned logic functions, and
then starts reassigning the values according to the Fig. 1.
SHA-256 message schedule’s output is denoted by Wj Fig.
2, which gets reevaluated in the beginning of every loop
iteration. After every 64 cycles eight 32-bit intermediate hash
values are calculated, this happen N times. In the end, the

Fig. 1. SHA-256 Compression function on jth step

Fig. 2. SHA-256 message schedule

eight intermediate hashes concatenated into a 256-bit hash.
Which is the result from the input M.[7]

To summarize this subsection, the computations start out
with fixed initial hash value, H(0), which is computed by tak-
ing the first eight prime numbers, then taking the square roots
of those eight prime numbers and finally taking the fractional
parts of those square roots and then formatting those fractions
into 32-bit words to produce H

(0)
1 , H

(0)
2 , ...,H

(0)
8 . Then

using the following formula, to consecutively compute

H(i) = H(i−1) + CMi(H(i−1)).

Here, C stands for SHA-256 compression function, that was
described above, ”+” denotes 32-bit wise mod 232 addition.
H(N), where N denotes the number of blocks the padded
message was parsed into, is the digest of M. [7]

B. Blockchain

The

III. IMPLEMENTATION

The section at hand is divided into two subsection. In
subsection A the author describes the data and its’ origin.
Subsection B gives an overview of the code that was
implemented for this report - what was done. Efficacy of
the implementation is discussed in the next section, titled
”Performance”.

A. Data

The data, that was used for this report, came from
data.gov.ie website, where Dublin City Council had pub-
lished Dublin Bus GPS sample data in two zip files. Both



zips contain several comma-separated values (CSV) format
files. Out of the two available zip files, the one titled ”From
1st Jan 2013 to 31st Jan 2013” was chosen. The data covers
geographically Dublin City. The data is released under the
Creative Commons Attribution 4.0 license. [10] According
to the latter, the author of this report is allowed to share and
adapt the data at hand, as long as the changes, that are made
are presented and appropriate credit is given. [9]

The CSV files contain 15 columns and a myriad number
of rows. The exact content of the columns is as follows:

• Timestamp e.g. 1354233602000000
• Line ID e.g. 272
• Direction e.g. 0
• Journey Pattern ID e.g. 027B1002
• Time Frame e.g. 2012-11-29
• Vehicle Journey ID e.g. 331
• Operator e.g. HN
• Congestion e.g. 0
• Lon WGS84 e.g. -6.229033
• Lat WGS84 e.g. 53.409618
• Delay e.g. 68
• Block ID e.g. 272006
• Vehicle ID e.g. 33452
• Stop ID e.g. 675
• At Stop e.g. 0

It becomes clear from the list, that almost all data types are
present i.e. integers, doubles, strings, signed integers, signed
doubles - they are all present in one row. This created a
good opportunity to see, if the implementation could handle
several data types.

The author of this report felt like for the purpose of
this report not all of the columns in the original data
were necessary. Hence, the CSV files went through a slight
preprocessing, which consisted of the following 2 steps:

• Total number of columns was brought down to five i.e.
fields containing Vehicle journey ID, Operator, Conges-
tion (0-no, 1-yes), Lon, Lat were kept for testing, like
in Fig. 3.

• Data was separated into 10 files with the difference
being the number of rows they contained - 100, 250,
500, 1000, 2500, ..., 100000 rows.

To summarize this subsection, the final row, that was ready
for hashing had a format of [5826, ’RD’, 0, -6.258584,
53.340099] and data was split into several files, of different
sizes (number of rows), in order to measure the performance.
Different data types in the list were not a problem for Python
3.5.

Fig. 3. Sample of the CSV file after preprocessing

B. Code and modifications

As mentioned previously the code was implemented and
modified in Python version 3.5.3. The code was borrowed
from Oscar Alsing’s github. The github README.md says
it is for ”A simple blockchain for educational purposes”.
[8] The author of this report also discovered that Oscar
Alsing also has a YouTube channel and a corresponding
video about the code. In the video [11] the author says ”you
can experiment and you know do whatever you want with
it” - this piece of information was just to clarify about the
usage of the code.

The code for this report was divided up into two .py files.
Class Block, which is responsible for the content of a hashed
block, has the following fields:

• digest of the previous block
• data - payload to be stored
• timestamp - block creation time
• hash for the block that is being created currently

There is also a method for creating the genesis block also
known as the very first block of the chain. The digest of the
previous block and the data are set to equal to ”0” for the
genesis block.

The last part of the Block class is the hashing method.
Where the digest of the previous block, data and timestamp
are converted into strings. Then the string gets turned into
binary and then hashed. Oscar Alsing created the hashing
method in a way, that the data gets hashed twice by the
Python’s hashlib library’s sha256 function - inner hash,
which gets turned into binary again and then hashed as outer
hash. The author of this report feels as if the double hashing
is redundant, but saw no harm in it either and kept it as was.

The blockchain.py file was however modified by the author
of this report. Firstly, the code was made to handle and
read CSV files. The separate data files, that were created in
subsection A, were given as arguments to the blockchain.py
file from the commandline. Each row from the CSV file was
read in as a list of comma separated values and attributed
to the data field of the block, that was to be created. The



final modification to the blockchain.py file was done with
the Python timeit library, which allowed the author of this
report to measure the time for creating blocks.

As was it was mentioned in the subsection A, the author of
this report made ten input files. That meant that the gathering
performance data, in this case time, was carried out in the
terminal of the author’s laptop by inserting 10 commands
i.e. python blockchain.py Data for testing*.csv. The asterisk
symbol was replaced with the corresponding number of rows
to be measured i.e. 100, 250, 500, 1000, ..., 100000.

IV. PERFORMANCE

Hashing function performs in constant time, due to the size
of the input for the function does not vary. Thus, adding new
blocks to the blockchain is performed in constant time. ergo
the current code performs in linear time. It is dependent on
the size of the size of the input, number of rows that need
to be turned into blocks.

The hashing function that was defined in the Block class
performs the hashing of data in constant time. That is
partly due to the fact, that the size of the data, that is
hashed into block, is constant. There are always five fields
in the row containing same types of data. Also, while the
hashing process was ongoing the author of this report made
sure, no other user related applications were running in the
background. Since the hashing was done in constant time, the
relationship between the amount of rows that were hashed
and the time it required to complete the task was linear. As
it was described in the beginning of the report the author
focused on only implementing the simplest functionality of
the blockchain. Therefore no other performance related data
was gathered.

The table I below displays the gathered data. The left
column contain row numbers form 100 till 100000 and the
right column contains the corresponding time in seconds.

TABLE I

TIME IT TOOK TO HASH AND APPEND DATA INTO THE BLOCKCHAIN

Number of rows hashed Time in seconds
100 0.001560926437
250 0.003134965897
500 0.008181095123

1000 0.01314806938
2500 0.03413701057
5000 0.05853295326

10000 0.1154618263
25000 0.2901489735
50000 0.5976510048
100000 1.213989019

The line graph, Fig. 4 displays relationship between time
(in seconds), on the Y-axis and number of rows to be hashed,
on the X-axis. From that it is obvious that the hashing
function performed in linear time.

Fig. 4. Something about Cool

V. DISCUSSION AND FUTURE WORKS

While searching for example solutions of a simple
blockchain code, the author came across several potential
sources [12] [13]. The final decision to use Oscar Alsing’s
code was made thanks to Oscar Alsing’s clear statement,
that his code could be used as one needed for educational
purposes. The author of this report has used the source code
to gain more insight into blockchain and modified it to fit
the goal of this report.

Only the simplest functionality has been implemented in
the the work at hand. Next steps would be to go through
and try all of the other sources the author had mentioned
before. This would ensure that the knowledge base would
grow even further and introduce new information regarding
the basic functionality of blockchain technology in general.
Additionally, it is important to familiarize oneself with all
the possible ways to implement the basic blockchain to avoid
possible confusion in the future.

After gaining more insight into blockchain, the next
important functionality to implement would be a verifier,
so that it would be possible to check the integrity of
the blockchain. Checking for integrity is vital part of any
functioning blockchain, what use is a blockchain and its’
property of immutability if it can not be checked.

Then the consensus problem has to be handled in a way,
that would allow for effective functioning of the blockchain.
And the concept of a miner, the one that adds info to
the blockchain, has to be introduced to this body of work.
Finally, distributing a copy of blockchain to several hosts
and maintaining it effectively should be done.



Regarding the performance of the current code, it should
be noted, that the results that were obtained are not relatable
to the real world. In the implementation that was carried
out for this report, the hashing happens at the speed of the
processor. In a real world application this kinds of speeds
would be considered spamming the blockchain and would
not be acceptable.

VI. CONCLUSIONS

There were two goals for this report. Firstly, to give
an overview of SHA-256 hash function and blockchain
technology. Secondly, implement a blockchain with basic
functionality. The implementation was carried out in python
language and using source code from Oscar Alsing’s github
[8]. The source code was modified to handle CSV data, that
was taken from [10], which was free for use according to
Creative Commons Attribution 4.0 International [9]. Hashing
was done on 10 CSV files, all of which were of different
size. The performance of the implementation was measured
and presented in the report’s section IV, titled ”Performance”.
The implementation performed way better than was expected
by the author, but also a caveat of the implementation was
discussed in the V section of this report. It is clear there is
more work to be done regarding the technology at hand. In
general, all of the goals, the author set before starting this
work, were met.

REFERENCES

[1] ”About Kodak”, Company homepage, https://www.kodak.

com/US/en/corp/company/default.htm

[2] KODAK and WENN Digital Partner to Launch Major Blockchain
Initiative and Cryptocurrency, 9th of Jan. 2018, https://www.
kodak.com/corp/press_center/kodak_and_wenn_

digital_partner_to_launch_major_blockchain_

initiative_and_cryptocurrency/default.htm

[3] Kodak announces its own cryptocurrency and watches stock
price skyrocket, Shannon Liao, The Verge, 9th of Jan. 2018,
https://www.theverge.com/2018/1/9/16869998/

kodak-kodakcoin-blockchain-platform-ethereum-ledger-stock-price

[4] Byzantine fault tolerance, From Wikipedia, the free encyclopedia
, used on 09.05.2018, https://en.wikipedia.org/wiki/

Byzantine_fault_tolerance

[5] What is the Difference Between a Blockchain and a
Database?, Nolan Bauerle, coindesk, used on 09.05.2018,
https://www.coindesk.com/information/

what-is-the-difference-blockchain-and-database/

[6] Hash function , From Wikipedia, the free encyclopedia,
https://en.wikipedia.org/wiki/Hash_function,
Used on 06.06.18

[7] Descriptions of SHA-256, SHA-384, and SHA-512 , The
Information Warfare Site, http://www.iwar.org.uk/

comsec/resources/cipher/sha256-384-512.pdf,
Used on 06.06.18

[8] oalsing, Simple-Blockchain, GitHub, https://github.com/

oalsing/Simple-Blockchain, used on: 29th of May, 2019

[9] Attribution 4.0 International (CC BY 4.0), https:

//creativecommons.org/licenses/by/4.0/

[10] Dublin City Council, Dublin Bus GPS sample data from Dublin City
Council (Insight Project), released: 2013-06-28, License: Creative
Commons Attribution 4.0 https://data.gov.ie/dataset/

dublin-bus-gps-sample-data-from-dublin-city-council-insight-project

[11] Blockchain in 15 MINUTES! Code Your Own Simple Blockchain,
Oscar Alsing, YouTube, Published on: 12. nov 2017 https://www.
youtube.com/watch?v=p4lw8CuQtq8&t=40s, Used on 15.
may 2018

[12] Learn Blockchains by Building One, Daniel
van Flymen ,https://hackernoon.com/
learn-blockchains-by-building-one-117428612f46

Used on: 15.05.18
[13] Building a Simple Blockchain in Python,

Gaurav Jain, http://www.pyscoop.com/

building-a-simple-blockchain-in-python/, Used
on: 15.05.18


