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Abstract—Jitter caused by Operating System (OS) is a well
studied factor known to influence the performance of High
Performance Computing (HPC) applications. In this study we
give a short overview of previous work regarding OS noise. We
implement benchmarking suite to quantify noise and present
experimental results from four different real life architectures.
We also attempt to reduce noise on fresh installation of general
purpose OS with the intention to verify the implemented tool and
to demonstrate the potentiality of tailoring general purpose OS’s
to HPC domain.
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I. INTRODUCTION

OS introduced noise i.e. jitter is a collective overhead
caused by hardware, user-space software, kernel daemons
and several OS management related applications. Massively
Parallel Platforms (MPP) are getting more popular - HPC is
not merely an academic-only landscape but an essential tool
driving innovation and development in various industries. At
the same time HPC applications are getting more complex e.g.
we are seeing growing interest in virtualization for achieving
fault tolerance as well as platform independency. Some appli-
cation require dynamic libraries and scripting environments
that are often not present on the computing nodes. Two
possibles solutions for meeting these demands are customizing
general purpose OS’s or extending existing light-weight and
microkernels.

Multi-user and multiprocessing environments require a
short latency time. In order to make sure that each task gets
it’s time slice among all other competing processes, an on-chip
timer is programmed to interrupt the CPU for tasks scheduling
purposes. Depending on the system, this might mean that
a computation job running alone on a core is needlessly
interrupted after every 10 to 1 ms. Moreover, it is common
for HPC applications to alternate between computation and
synchronization phases. If some of the nodes enter synchro-
nization phase late, all the other nodes will have to wait and
the whole computation process gets delayed. In this context, it
becomes clear that providing users with the environment they
are accustomed to, and at the same time achieving comparable
results to light-weight or microkernels, is not a trivial task.

In order to gain deeper understanding on how noise in OS
influences the HPC applications, we conducted a literature

review on related studies to explore different methods for
reducing and quantifying the noise as well as identifying
individual noise sources. Using some of the techniques we
implemented a benchmarking suite and verified it against four
real word architectures. We also performed and customized
a clean installation of a general purpose OS with a goal to
explore the overall system noise level.

This paper is organized as follows: in Section II we will
give a short overview of the previous work. In section III
the description of the method is given. Section IV provides
experimental results produced in the study. Section V will
summarise the results.

II. PREVIOUS WORK

A significant effort has been dedicated to understand how
OS introduced noise affects scientific computations. Part of
this work also involves studying and developing techniques
for quantifying and reducing the noise. The purpose of this
section is to give brief overview on some of this work.

Morarie et al. developed a quantitative descriptive method
for describing individual noise events in [1]. The method
is based on augmenting LTTng (Linux Trace Toolkit Next
Generation) to produce a trace consisting of kernel entry and
exit points. By analysing the trace they identified individual
noise sources. In addition, they compare their results with
those of obtained with Finite Time Quantum (FTQ) benchmark
proposed by Sottile and Minnich in [2]. FTQ measures a
maximum number of basic operations that can be completed
during some fixed time interval and number of operations that
were actually completed. The difference of these two quantities
is identified as noise introduced by OS. Although both methods
seem to detect similar events, the results obtained by the former
are much more specific, allowing us to differentiate events
such as causes of interrupts. The findings show that majority
of the noise is comprised of periodic timer interrupts and
page faults. Moreover, different applications are likely to be
differently affected by the jitter, mainly because of the nature
of applications, e.g. some tasks are hard for OS to balance and
therefore cause indirect overhead.

In [3] Akkan et al. measure and identify OS noise using
Fixed Work Quantum (FWQ) benchmark and Ftrace1 - a Linux
kernel built-in tracing utility, available for several platforms.

1https://www.kernel.org/doc/Documentation/trace/ftrace.txt



Contrary to FTQ which counts individual operations, FWQ
repeatedly performs a fixed amount of work and measures
the time necessary to complete that work. They experiment
with tickless Linux prototype, which means offloading OS
tasks to dedicated core(s) allowing other cores to work in an
uninterrupted manner. In this particular case, they pin cores 3-6
of a 4-socket 6-core AMD Opteron machine to a benchmarking
application and leave other two for OS tasks and interrupts. To
study cache related effects, they fill all but one L1 cache line
available on a core with an array. This way, they are be able to
detect when some of the data is evicted from the cache. Results
from this experiment show that parallel applications running
in tickless environment run faster due to reduced variability
time in synchronization phase. On the other hand, since all
network packets are processed only on dedicated OS cores,
network bandwidth is reduced up to 10%. Disabling ticks also
eliminated L1 cache misses, as there were nothing else but
benchmarking application running on a single core. Similar
study conducted by Petrini et al. in [4], also using FWQ-like
technique, confirms the role of timer interrupts (LAPIC/PIC)
in OS noise.

Using a theoretical probabilistic model Tsafrir et. al showed
in [5] that the noise in parallel jobs grows linearly w.r.t. the
number of nodes it occupies. But only if noise probability
is small enough. Once the job exceeds a particular size, a
detour is nearly certain to occur. This model assumes Bernoulli
distribution, implying bimodality. The authors admit that this
might not be the case in practice, since often there are different
probabilities for different noise events. An empty loop is ran
on all cores with computation phase calibrated to take certain
amount of time. Individual run times of loops were saved for
later processing. The collected dataset yielded an distribution
used to interpolate detour probability. A low overhead tracing
utility klogger was developed to study noise. As in [3], all
the daemons usually not found in scientific OS were removed.
Authors conclude that majority of fine-grained noise is caused
by system interrupts. Context switches between kernel and user
mode evict application data from cache causing cache misses.
They propose a concept called smart timers which aims at
reducing overhead by avoiding unnecessary periodic ticks. This
is achieved by setting one-shot timers and doing all kernel
accounting upon each kernel entry rather than periodically.

Kothari et al. developed a tool in [6] that identifies and
quantifies OS jitter, leaving aside cache misses, TLB (Trans-
lation Lookaside Buffer) misses and page faults. By running
a loop on a patched kernel with tracepoints, a timestamp was
logged upon each entry of a loop. From this data, noise is
identified by subtracting successive timestamps and comparing
the resulting value against some threshold. Study claims that
63% of the total jitter comes from timer interrupts. Rest is
the result of various system daemons and interrupts, most of
which can be eliminated.

The effectiveness of co-scheduling solutions on 4096 CPU
IBM Power6 multicore cluster is studied by Seelam et al. in
[7]. Each node in the cluster runs an IBM AIX OS image.
Authors developed a micro-benchmark that performs series of
computations on every CPU followed by a global synchroniza-
tion operation. More precisely, the method employs two nested
loops: the inner one which is used for performing calculations
and the outer one for collective synchronisation. The task in
the inner loop is calibrated to run a fixed amount of time. Thus,
any noise encountered during the computation will cause nodes
enter the synchronization phase late. Study highlights several
interesting findings. Firstly, not all cores experience similar
noise. Primary CPU is likely to experience more noise due to
additional responsibilities such as load balancing. Moreover,
some Linux SMP (Symmetric Multi Processing) kernels tend
to set default affinity for many interrupts to CPU 0 [8],
thus further increasing noise. They observe that average tick
processing times grows as the function of the number of CPUs.
This finding is also confirmed in their later study [9], in which
they observe that jitter not only varies between the different
cores but also between the hardware threads in each core.
Secondly, study claims that the number of CPU that contribute
to the overall noise grows proportionally to the degree at which
computation interval gets smaller. They also stress that from
the perspective of scalability it is important to identify and
mitigate jitter sources with high variance.

Ferreira et al. construct kernel-level noise injection frame-
work [10] to characterize the impact of noise on HPC appli-
cations in Cray XT3/4 series machine consisting of 13,000
nodes. Each node contains 2.4 GHz dual-core AMD Opteron
processor and Cray SeaStar network interface, which is con-
nected to the CPU via a HyperTransport link. The framework
allows to specify noise in terms of duration and frequency.
Variety of noise patterns are studied on different applications
running on Catamount lightweight operating system. They
show that show that 1000 Hz 25µs noise interference can cause
a 30% slowdown in application performance on ten thousand
nodes. In fact, noise with this frequency can have up to 5%
of slowdown on application considered relatively insensitive
to noise. They also observe, that HPC application can often
absorb substantial amounts of high-frequency noise, but tend
to be significantly affected by low frequency noise.

III. METHOD

We implemented micro-benchmark utility bench to quan-
tify and identify noise events. Using Selfish detour method
proposed by Beckman et al. in [11] and tracing utility Ftrace,
we collect and identify individual noise sources. Compared
to the other Linux tracers such as ktrace, LTTng etc., Ftrace
offers an extensive feature set and provides a convenient tree
like output of system calls.

Platform CPU OS rdcts() (µs) gettimeofday() (µs)
Laptop Intel(R) Core(TM) i5-3437U 2.4GHz Ubuntu 13.10 (Linux 3.11.0-18) 0.0146 0.5629

KIA AMD A10-5800K APU with Radeon(tm) HD Graphics 3.8GHz Fedora 20 (Linux 3.13.6-200) 0.0111 0.4188

Vedur AMD Opteron(TM) 6276 2.3GHz SL6.5 (Linux 2.6.32-358.2.6) 0.0191 0.2839

Rocket Intel(R) Xeon(R) E5-2660 v2 2.20GHz SL6.5 (Linux 2.6.32-431.1.2) 0.0451 0.4087

TABLE I: Characteristics and benchmarks of different systems.



29378.940821 | 0) bench-28781 | | do_IRQ() {
29378.940822 | 0) bench-28781 | | irq_enter() {
29378.940822 | 0) bench-28781 | 0.074 us | rcu_irq_enter();
29378.940823 | 0) bench-28781 | 0.052 us | vtime_account_irq_enter();
29378.940825 | 0) bench-28781 | 1.002 us | }

Fig. 1: function_graph output displaying timestamp, CPU, process, PID, duration and function name respectively.

A. Ftrace

Ftrace is a generic tracing framework instrumenting Linux
kernel. Among all available tracers in Ftrace, the one concern-
ing this paper is function_graph tracer, which probes a
function on its entry and its exit. This is done by using a
dynamically allocated stack of return addresses. On function
entry the tracer overwrites the return address of each function
traced to set a custom probe, while saving the original return
address. When the instrumented routine finishes it returns to
Ftrace, which calls the function graph tracer with the function
exit tracepoint data. After that the real return address is popped
from the stack and control is handed over to the real caller.

Ftrace utilizes implicit instrumentation, i.e. implicit trace-
points are placed into the code automatically by the compiler
[12]. If a flag indicating compile-time support for Ftrace is
set, the compiler adds code calling assembly routine mcount
to the prologue of each function. Some systems that support
dynamic tracepoints are tailored with Ftrace enabled by de-
fault, because operating system is able to replace trace points
with nop instructions whenever the tracer is disabled, thus
producing little or no overhead.

The trace is kept in preallocated ring-buffer, a circular data
structure consisting of linked pages. Page refers to a 4096-byte
structure, which is default (virtual memory) page size for x86
Linux kernels. Trace is read from the buffers and written to disc
after the benchmarking process is completed. The buffer size
is modifiable and restricted to the amount of available memory.
A practical problem with function_graph is that trace fills
up very quickly. Because processing large text files consumes
too much time, increasing the buffer size is solution only up
to a certain point (∼ 64 MB). Also, other OS related concerns
that might influence the benchmarking procedure arise, e.g.
swapping.

B. Selfish detour

The idea behind selfish detour (SD) is running a loop that
identifies and stores informations about noise events. Inside
the loop a timestamp is recorded and compared to the one
recorded during the last iteration. If the difference between
the timestamps exceeds a certain threshold we conclude that
we have been hit by a noise event, otherwise, we assume we’ve
been working uninterruptedly. A pseudo code of the method
is provided in Figure 2.

We are also interested in the minimum number of cycles
needed to execute the loop. This way we can calculate the
length of each detour by subtracting the minimum length of
the loop from the difference of consecutive pairwise entries in
the array.

The drawback of this method is that it doesn’t take into
account memory related noise effects. Only data used in the
process is an array for collecting the results. Also, not much
can be said about the noise sources. For the this purpose Ftrace
is used.

current = rdcts()
while(count < maxiter):
prev = current
current = rdcts()
td = current - prev

if(td < threshold):
results[count++] = prev

results[count++] = current

# Count min. ticks required to execute
# this loop.
if(td < minticks):

minticks = td

Fig. 2: Pseudo code of selfish detour loop.

C. Bench

Bench is implemented as MPI application meant to run
on all cores to get accurate results. As in [11], we have
implemented the timestamp method using inline assembler
code which retrieves the current value from CPU-s timestamp
counter (TSC) register (see rdcts() in Figure 2). As a
novelty we benchmark each CPU for minimum loop length
and choose the minimum from all of the results as the global
minimum used to calculate the noise durations. This is done
to prevent factors introduced in [7], [9] from compromising
the overall results. The global minimum also constitutes as
maximum resolution of the benchmarking utility. On all of the
systems we observed during this study, the minimum length
of a loop never exceeded 0.01µs.

As stated earlier, each CPU is benched separately. This
means that careful attention has to be paid on CPU-s that
become idle. More precisely, we don’t want the processors
exiting loop earlier to take up noise events. In addition we’d
like to prevent all other perturbing processes such as load
balancing from happening. Borrowing an idea from Netgauge2

network benchmarking tool, we have placed a MPI_Barrier
operation before the results are being collected. Most MPI
implementations busy-wait on blocking operations to ensure

2http://htor.inf.ethz.ch/research/netgauge/



(a) (b)

(c) (d)

Fig. 3: Noise from KIA (a) and Laptop (b).
CPU-s with the same ID from two consecutive nodes of Vedur cluster, (c) and (d).

high availability of the processor. This means that CPU is
utilized up to 100% even when no real computation are made.

As a next step, each process calculates the duration of
benchmarking operation as well as the total sum of noise
events. This data is then passed to master process which
together with it’s own results outputs the ratio of the summed
noise and summed durations converted to percentage. This
quantity constitutes the overall extra effort CPU makes relative
to the total length of the calculation. Bench also produces
gnuplot compatible plots displaying jitter per CPU, such as
seen in Figure 3.

To quantify individual noise sources we use Ftrace
function_gaph tracer output. Bench can automatically
start and stop Ftrace tracing process, or not use that facility
at all. This becomes necessary when we benchmark systems
where Ftrace is either unavailable, incompatible or we don’t
have sufficient privileges. Sample of function_gaph output
is provided in Figure 1.

Aligning the output from previous steps, i.e. start and end
timestamps of detours, with the Ftrace log, we try to identify as

much as noise sources as possible. We are not concerned about
timer value differences across the CPU-s as the tracing is done
on each CPU separately. Also, we believe that the overhead
caused by running Ftrace simultaneously with benchmarking
loop is subtle and doesn’t depend on function being traced.

Due the peculiarities in Ftrace implementation, last tree
digits of TSC value are not visible in the log, meaning that
some of the events might appear in the trace log as they have
started or ended at the same time, or both. Concerning the
study, this is not a problem, because we use 1µs as a threshold
(translates to 2900 cycles on a 2,9 GHz machine). According to
measurements in [11], most architectures have typical detours
ranging from one to several µs.

IV. RESULTS

We tested the benchmark suite on four different real world
architectures. An overview of the most important characteris-
tics for each platform is provided in Table I. For two of the
systems, namely Laptop and KIA, we had sufficient access
privileges to run Ftrace on them. On Rocket and Vedur we



had to limit ourselves just to experimenting how increasing
the number of cores/nodes affected the results.

A. Benchmarking the laptop and KIA

We ran Bench both on noisy laptop and KIA taking 5
samples on each. We used 1µs as a threshold and collected 105

noise events. These two environments were completely differ-
ent in terms of noise. Laptop ran several user programs with
extensive network traffic, while KIA had a post-installation
environment with nothing extra except sshd daemon running.
Both machines had frequency scaling turned off.

The average noise overhead measured on laptop was
9.1106% with std. dev 2.2%. On KIA, the same quantities were
2.0955% and 0.02% respectively. The noise can be observed
on plots (a) and (b) in Figure 3, both collected from CPU 0.
On y-axis we have the detour duration in µs (logscale) and on
x-axis the time in seconds from the beginning to the end of
the benchmarking process. In terms of environment, both plots
depict what we excepted, except the sudden decrease of noise
on KIA. This effect can be seen on all CPU-s through out all
of the samples we took. Tools developed in this study are not
able to provide information as for why this is happening, so
one could only speculate.

Exploring the Ftrace output revealed that majority of the
explorable noise is caused by local timer interrupts, 95.75%
for laptop and 99.55% for KIA. Roughly four percent of other
noise comprising events on laptop were hardware interrupts.
Rest of the jitter was mainly caused by kernel threads such as
kworker. Both machines also experienced page faults, 0.22%
- 0.35%.

In another experiment, we tried to disable as many as
redundant or non-critical daemons and services on KIA as
possible. In this category are all graphic and multimedia related
services that are not needed in HPC headless environment e.g.
gdm (Gnome Display Manager), biometry daemons such as
fprintd, connectivity services e.g. bluetoothd and other
miscellaneous utilities. We did, however, preserve security
related features such as firewall and logging services. We then
rerun Bench and achieved 0.2925% decrease in noise, that is
1.803% measured in total CPU overhead with 0.01% sdt. dev.
Despite the low gain, we are still optimistic. This was by no
means the maximal attempt to clean up redundant services.
One could achieve better results simply by filtering logging and
audit targets, disabling SELinux, replacing wasteful daemons
with more light-weight ones etc. We plan to improve these
results in the future.

B. Cluster

Results on Vedur and Rocket clusters are worrisome. See
Table II for Vedur. A general rule when running Bench on
both clusters is that when benching only one node we get a
surprising 32% for Vedur and 5% for Rocket (20 cores on
each node), then a sudden drop after which the noise starts
to grow. The detour trace are not free of anomalies either,
both on Rocket and Vedur we can witness more than order
of magnitude difference in noise levels for individual CPU-
s on the same node. Figure 3 (c) and (d) show CPU-s with
the same ID-s on different nodes. Notice the great variance
between noise duration.

Nodes / CPU-s CPU overhead (%) Standard deviation (%)
1/32 22.8615 3.73625

2/64 13.4848 2.59186

3/96 14.2309 5.22443

6/192 19.3965 3.6288

10/320 22.9351 3.5549

20/640 27.4348 6.08552

TABLE II: Vedur benchmarks.

As stated earlier, we didn’t have sufficient privileges to run
Ftrace on these systems, nor were we able to control frequency
scaling and other power management related settings. CPU
throttling might in fact be the cause of these strange results.
At the beginning of measurements each CPU is benchmarked
to estimate the number of cycles per second. All other mea-
surements are dependent on this estimate and are thus biased if
the CPU frequency changes during the benchmarking process.
Moreover, we have reason to believe that not all nodes on
Vedur have similar clock rate.

V. CONCLUSION

Numerous works have explored the influence of OS jitter
on different platforms. In this paper we implemented experi-
mental benchmarking suite and showed that majority of noise
is indeed caused by periodic timer interrupts and hardware
IRQ-s, thus confirming the results of previous studies. Using
the real world architecture, we have also showed that some of
the noise can be eliminated by removing and disabling non-
critical daemons.

The future work should concentrate on improving the
method in controlled cluster environment. Results from two
other architectures provide confidence that the method can
identify and quantify different sources of noise, although more
effort is needed to characterize detected jitter patterns as well
as their effects on collective operations.
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