Semantically enriching mobile subscribers’ trajectories

Elis Kõivumägi
University of Tartu
Outline

• Introduction
• Data overview
• Algorithm description
• Results
• Conclusion and next steps
• Acknowledgments
Introduction

• I’ve been working in co-operation with mobile operators and location data for several years
• Published a paper about framework for home/work detection and real time labeling
• PhD thesis is about profiling mobile subscribers
Data (1)

- 20 people
 - 12 months

- Location events from
 - Real time event stream (calls, SMS messages)
 - Raw data events (sessions)
 - Cell level accuracy
 - Average cells: 10-11 (in a day)
 - Average number of events: 60-70 (in a day)
 - No lat,lon coordinates at GPS accuracy
Data (2)

• Cellplan
 • Coverage areas for -90dbm
 • Required for mapping POIs to events -> from events to subscribers
Data (3)

• POI data
 • Nr of objects ~8000
 • Categories
 • Education
 • Sport
 • Food
 • Shopping
 • Entertainment
Algorithm (1)

- Read input location data to cell by hour matrix
 - Reverting to hourly accuracy
- Configurable
 - By hours
 - By days
 - How many days
- Read input cell data
 - Can be configured to ignore cells larger than $X \text{ km}^2$
 - Generate cell intersections array
 - Cell areas overlap
Algorithm (2)

• Detect episodes using cell intersection array
 • All episode cells must overlap with each-other
 • Each cell can only be part of one episode
 • Disregard large cells by eliminating them from the input

• Episodes will consist of:
 • Cell IDs
 • Hours for each cell
 • Event counts for each hour
Algorithm (3)

- Find POIs for each cell
 - Lat, lon inside of cell coverage area
 - Cell-POI dictionary
- Configure POI visiting hours

<table>
<thead>
<tr>
<th>POI type</th>
<th>Mon-Fri</th>
<th>Sat-Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport</td>
<td>7:00-9:00 or 18:00-21:00</td>
<td>14:00-18:00</td>
</tr>
<tr>
<td>Entertainment</td>
<td>19:00-02:00</td>
<td>18:00-02:00</td>
</tr>
<tr>
<td>Shopping</td>
<td>17:00-20:00</td>
<td>10:00-18:00</td>
</tr>
<tr>
<td>Food</td>
<td>12:00-14:00</td>
<td>18:00-20:00</td>
</tr>
<tr>
<td>Education</td>
<td>9:00-15:00</td>
<td>-</td>
</tr>
</tbody>
</table>
Algorithm (4)

- Find semantics for episodes based on cell-POI dictionary
- Only select those POIs to episodes that have matches to POI visiting hours
- Weights for POIs will be calculated using event counts for episode cells only for valid hours
- The higher the episode hours match rate to POI hours the better
- Also supports adjusting weights to POI frequencies per cells but currently disabled
Example (1)

• Episode = \{C_1, C_2, C_3, C_1\}
• Hours = \{18, 18, 20, 19\}
 • Sport = \{7,8,9,18,19,20,21\}
 • Education = \{9,10,11,12,13,14,15\}
 • Food = \{12,13,14\} //lunch
 • Shopping = \{17,18,19,20\}
• Events = \{25, 18, 4, 20\}
 • Sum(Events) = 67
• POIs
 • C_1 = \{sport, education, shopping\}
 • C_2 = \{sport, food\}
 • C_3 = \{food, shopping\}
• Weights
 • Sport = 0.94
 • Shopping = 0.73
Example (2)

• Adjust weights depending on matching hours
• In this example weights remain the same because all episode hours are within both Sport and Shopping category hours
• Final weights:
 • Sport = 0.94
 • Shopping = 0.73
Results 1

• POIs:
 • Sport: 0.32
 • Shopping: 0.32
 • Entertainment: 0.03

• Hours
 • 12, 18, 18, 19

• Before adjustment
 • Sport: 0.42
 • Shopping: 0.42
 • Entertainment: 0.14
Results 2

- POIs
- Hours
 - 8, 19
Results 3

• POIs
 • Education: 0.37
 • Food: 0.21

• Hours
 • 13, 14, 15

• Before adjustment
 • Education: 0.46
 • Food: 0.53
Conclusions/challenges

• Good way to find where people have lunch, train, shop/buy groceries

• Difficult to identify:
 • Other repetitive activities – drop off children to school/kindergarten
 • Trajectory density issue

• Inaccurate cell coverage areas reduces the accuracy drastically
 • -90dbm seems too pessimistic
 • On the other hand – increasing the area will have a reverse effect

• Use home/work locations to decouple episodes

• Blacklist cells with no POIs or find nearest POI(s)?
Acknowledgments

• University of Tartu and Distributed System Group
• STACC
 • Software and Technology Competence Center
• Reach-U